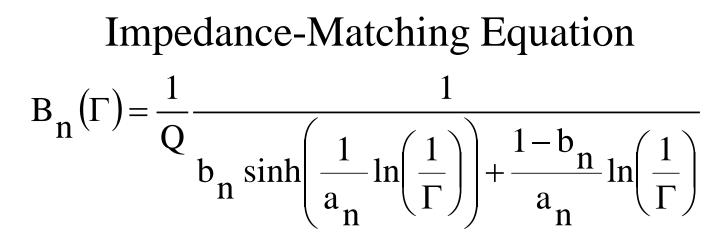
Impedance-Matching Equation: Developed Using Wheeler's Methodology

Alfred R. Lopez IEEE AP-S/URSI International Symposium July 9, 2012 Chicago, IL USA

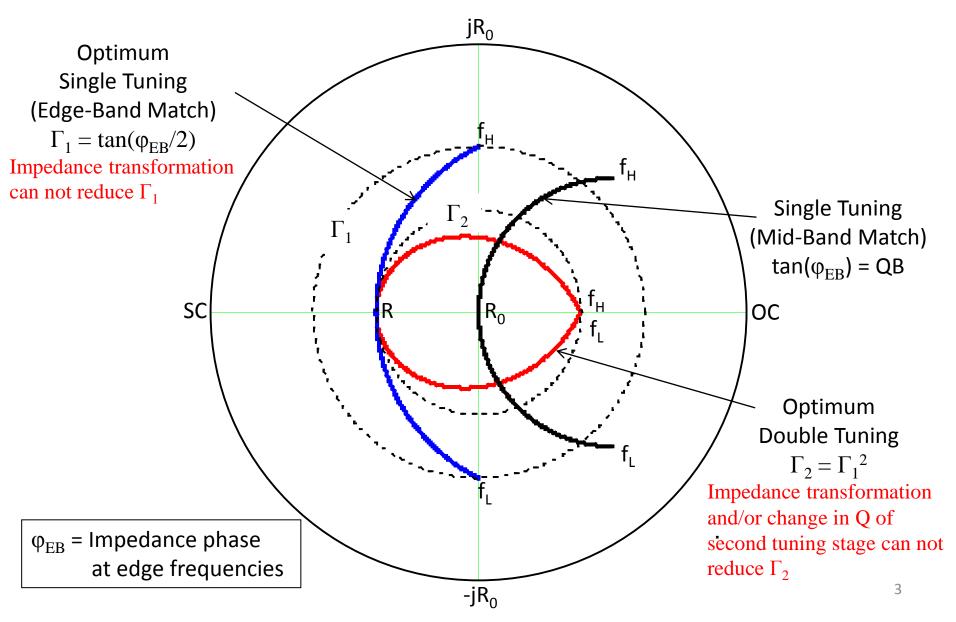


Exact for n = 1, 2, and ∞ QB_n Error < 0.1% for Γ > 0.10, and < 0.3% for Γ > 0.05

- $B_n =$ Fractional impedance-matching bandwidth
- $B_n = (f_H f_L)/f_0$
- $f_0 = Resonant frequency = \sqrt{f_H f_L}$
- Q = Antenna Q (Ratio of reactive power to radiated and dissipated power}
- Γ = Maximum reflection magnitude within B_n
- n = Number of tuned stages in the impedance matching circuit (Measure of the complexity of the circuit)

n	a _n	b _n	n	a _n	b _n
1	1	1	6	2.838	0.264
2	2	1	7	2.896	0.209
3	2.413	0.678	8	2.937	0.160
4	2.628	0.474			
5	2.755	0.347	8	π	0

Wheeler's Optimum Single- and Double-Tuned Matching Proof by Inspection

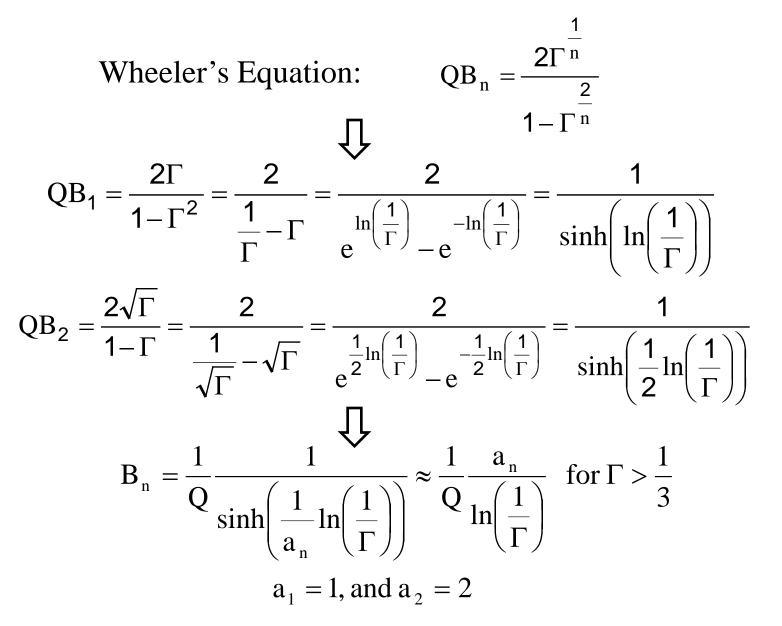


1973

Wheeler's three equations (1940s) for a resonant antenna were converted to a single equation

1. $QB = tan(\phi)$ $\phi = Impedance phase at edge frequency$ 2. $\Gamma_1 = \tan(\varphi/2)$ (Single Tuning) 3. $\Gamma_1 = \sqrt{\Gamma_2}$ (Double Tuning) Single Tuning : $\tan(\varphi) = \frac{2\tan(\varphi/2)}{1-\tan^2(\varphi/2)}$ $QB_1 = \frac{2\Gamma_1}{1-\Gamma_1^2}$ $QB_2 = \frac{2\sqrt{\Gamma_2}}{1 - \Gamma_2}$ Double Tuning : $B_{n} = \frac{1}{Q} \frac{2\Gamma^{\frac{1}{n}}}{1 - \Gamma^{\frac{2}{n}}}$ Wheeler's Equation: Single tuning, n = 1Double tuning, n = 2

1973 Continued



1973 Continued

Fano - Bode Equation

For all n and $\Gamma > 1/3$:

$$B_{\infty} = \frac{1}{Q} \frac{\pi}{\ln\left(\frac{1}{\Gamma}\right)} \qquad a_{\infty} = \pi$$

Is
$$B_n \approx \frac{1}{Q} \frac{a_n}{\ln\left(\frac{1}{\Gamma}\right)}$$
???

Knew that $a_1 = 1$, $a_2 = 2$, and $a_{\infty} = \pi$

Ref.: L.B.W. Jolley, "Summation of Series," Dover, New York, (410), p. 76, 1961

$$1 + \frac{1}{3} + \frac{1}{5} \left(\frac{2}{3}\right)^2 + \frac{1}{7} \left(\frac{2}{3}\frac{4}{5}\right)^2 + \dots \infty = \frac{\pi}{2}$$

$$1 + 1 + \frac{1}{3} + \frac{1}{3} + \frac{1}{5} \left(\frac{2}{3}\right)^2 + \frac{1}{5} \left(\frac{2}{3}\right)^2 + \frac{1}{7} \left(\frac{2}{3}\frac{4}{5}\right)^2 + \frac{1}{7} \left(\frac{2}{3}\frac{4}{5}\right)^2 + \dots \infty = \pi$$

$$-\frac{\pi}{2}$$

 $a_n = \sum_{k=1} s_k$ $a_1 = 1$ $a_2 = 2$ $a_3 = 2.333$ $a_4 = 2.667$ $a_5 = 2.756...$ $a_{\infty} = \pi$

1973 Impedance-Matching Equation (Original Equation)

$$B_{n}(\Gamma) = \frac{1}{Q} \frac{1}{\sinh\left(\frac{1}{a_{n}}\ln\left(\frac{1}{\Gamma}\right)\right)}$$

Exact for n = 1 and 2 Approximate for $\Gamma > 1/3$, and n > 2

n	a _n	n	a _n
1	1	6	2.84
2	2	7	2.89
3	2.33	8	2.93
4	2.67		
5	2.76	∞	π

Sent letter to Professor Fano asking for help in determining accuracy of a_n

1973 Fano's Reply

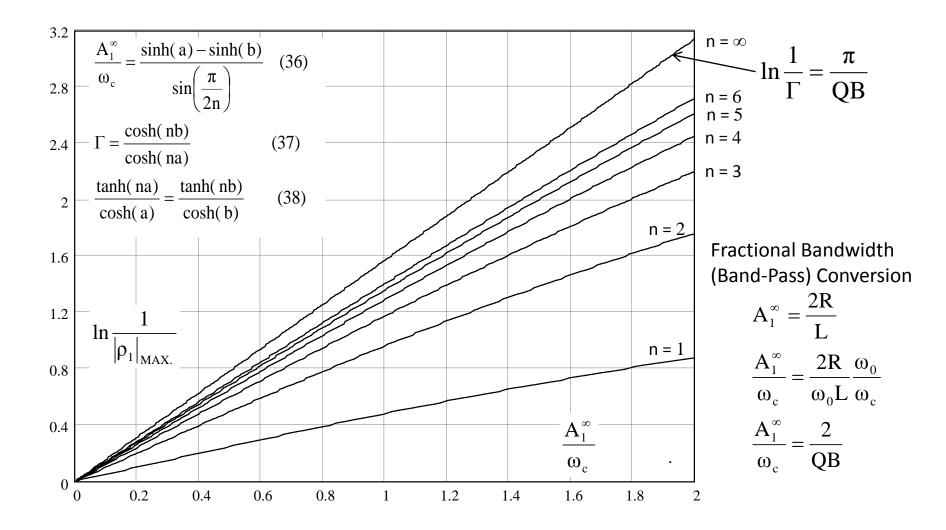
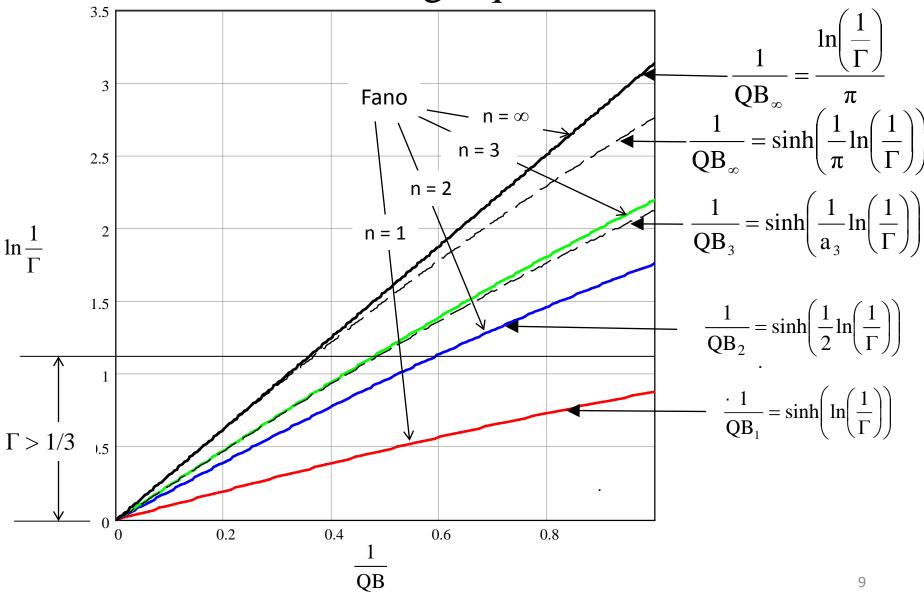


Fig. 19. Tolerance of match for a low-pass ladder structure with n elements

2004 – Comparison of Fano and Original Matching Equation



2004 Impedance-Matching Equation

$$B_{n}(\Gamma) = \frac{1}{Q} \frac{1}{b_{n} \sinh\left(\frac{1}{a_{n}}\ln\left(\frac{1}{\Gamma}\right)\right) + \frac{1-b_{n}}{a_{n}}\ln\left(\frac{1}{\Gamma}\right)}$$

b_n coefficient provides blending of the "sinh" and "In" functions

Conclusion

- Wheeler's development of the principles for double-tuned impedance matching was a major contribution. Although it was developed for lumped-element circuits it has a broader application
- You can see by inspection that his solutions were optimum
- The Impedance-Matching Equation provides connectivity and a good perspective for the works of Wheeler and Fano. Although Wheeler described qualitatively the law of diminishing returns for multiple-tuned circuits beyond double tuning, Fano's work quantified this tradeoff
- Wheeler once said: "You have to work hard to find the easy way"
- Wheeler's simple geometrical development of optimum singleand double-tuned matching, using the reflection chart, was truly a work of art.

A Work Of Art

Harold A Wheeler Fig. 8, WL Report 418, May 1950

