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Abstract 
 
Harold Wheeler, in the 1940s developed, in a simple form, the principles of 
double-tuned impedance matching. These relationships are not well known. They 
are very useful for the antenna designer in providing a structured approach to 
obtain near maximum bandwidth for narrowband and moderate-band antennas 
with a specified VSWR limit using a practical arrangement of tuning elements.  
 
Wheeler first developed relationships for single-tuned impedance matching, 
which relate the fractional bandwidth to the antenna Q and the maximum 
permissible reflection-coefficient magnitude (or VSWR). He used the results of 
single-tuned impedance matching to derive the relationship for double-tuned 
impedance matching. 
 
Wheeler’s double-tuned impedance matching relationship is the best overall 
measure of the achievable fractional bandwidth for an antenna. Double tuning is 
practical and provides more than double the fractional bandwidth of single-tuned 
impedance matching.  
 
One example of double-tuned impedance matching is presented. A comparison 
to recently published results for single-tuned impedance matching verifies that 
double tuning more than doubles the fractional bandwidth of single-tuned 
impedance matching. 
 
1. Introduction 
 
It is believed that it was Wheeler [1,2] who first introduced the concept of double-
tuned impedance matching. He started by first defining two types of single-tuned 
impedance matching. The antenna was assumed to be a capacitor or inductor 
with constant radiation resistance. If the antenna was a capacitor in series with a 
resistance, he used an inductor in series with the capacitor to resonate the 
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antenna, and if needed, an impedance transformer to achieve impedance match 
(zero reflection) at the resonant frequency. He referred to this case as “single-
tuned mid-band matching”.  
 
For best matching over a frequency band the maximum reflection-coefficient 
magnitude or the maximum VSWR is specified. For this case Wheeler introduced 
mismatch at the resonant frequency to achieve the mismatch limit at the edge-
band frequencies [2, Fig. 6], [3, Fig. 2]. He referred to this case as “single-tuned 
edge-band matching”. For a 2:1 VSWR limit, edge-band matching provides a 6% 
increase in bandwidth over mid-band matching. Edge-band matching provides 
the highest possible fractional bandwidth for single-tuned impedance matching. 
 
Double-tuned impedance matching was defined directly from the single-tuned 
edge-band matching case. For the series tuned circuit described above a parallel 
resonant circuit was added to double-tune the antenna such that the edge-band 
frequency points are coincident on the zero-reactance line. Simple geometrical 
proofs, using the reflection chart, showed that the reflection-coefficient 
magnitudes for the low, mid and high frequencies are the same, are maximum 
values, and that the maximum reflection-coefficient magnitude for the double-
tuned case is equal to the square of the maximum reflection-coefficient 
magnitude for the single-tuned edge-band matched case. 
 
Wheeler’s work produced three equations [3]: 
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(For a given antenna Q, B is the bandwidth over which a specified 
reflection-coefficient magnitude (or VSWR) is not exceeded.) 
f0 = Resonant Frequency 
Q = Antenna Quality Factor (In general, includes dissipative loss) 
Γ = Maximum Reflection Coefficient Magnitude 
S = Maximum VSWR 
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Double-tuning more than doubles the single-tuning bandwidth. 
 
Wheeler pointed out [2] that even though the above results were derived for an 
electrically small antenna (capacitor or inductor with constant resistance) they 
also apply to larger antennas such as a wavelength dipole. The general double-
tuning principles that apply to all antennas are: 

1. The impedance locus encircles the center of the reflection chart 
2. The edge-band frequencies and an intermediate frequency (at or near 

resonance) are at the limit of the permissible reflection-coefficient  
magnitude (or VSWR) and lie on a straight line that passes through the 
center of the reflection chart 

 
This paper presents one example of double-tuned impedance matching. The 
selected antenna is the spherical-cap dipole with ka = 0.450 at 300 MHz (1/k = 
λ/2π = radian length, a = radius of sphere that circumscribes the antenna). This 
antenna was selected so that the results could be compared to recently 
published results for single-tuned mid-band impedance matching [4, Table 4].  
 
The purpose of this paper is to highlight the double-tuned impedance-matching 
concept and to demonstrate, by means of an example, the substantial bandwidth 
increase of double tuning over single tuning. The emphasis here is the theoretical 
quantification of the impedance-matching bandwidth as limited by the Q of the 
antenna and the maximum permissible reflection coefficient magnitude. Equation 
(3) above defines this relationship. 
 
Double-tuned impedance matching should not be confused with other impedance 
matching techniques, such as double-stub impedance matching [5], which are 
techniques for matching an arbitrary load at a single frequency, and are, 
essentially, single-tuned designs. Double-tuned impedance matching is a 
member of a family of multiple-tuned circuits that provides, in theory, the highest 
possible impedance-matching bandwidth for narrow and moderate bandwidth 
applications. The distinguishing feature of this family is that it is designed for 
impedance matching of an inductance-resistance or capacitance-conductance 
load over the widest possible bandwidth, consistent with the limitations imposed 
by the complexity of the matching network, the Q of the load, and the permissible 
reflection coefficient magnitude. This family was first described by Fano [6].  
 
Although this article is based on the results of computer simulations the 
application of the principles to practical antennas has a long history. An early 
application of the double-tuned impedance matching principle to the design of an 
antenna is attributed to Wheeler [1]. His patent, issued in the 1940s, describes 
the details and the performance of what was called the “Lifesaver Antenna.” This 
antenna design utilized the double-tuned impedance matching principle. During 



World War II it was manufactured by the thousands and was used for IFF 
(Identification Friend-or-Foe) transponders on battleships and all other ships of 
the Allied Nations.  
 
The Wheeler legacy group (Wheeler Labs) has used this matching principle in 
the design of many antennas from the 1950s to the present. Wheeler [7] 
describes three of these later applications: (1) “Wideband Matching of Circular 
Flush Element in a Planar Array,” 15% bandwidth, 1966; (2) “Vertical-X Dipole 
with Wideband Matching,” 3:1 bandwidth, 1983; and (3) “Fin Type of Small 
Antenna on Aircraft Skin,” 3:1 bandwidth.  
 
A recent publication by the author [8] describes an array antenna for the GPS 
Landing System. The design of the array element utilized double-tuned 
impedance matching to achieve performance over the complete GPS frequency 
band (1176 to 1575 MHz, 29.3% fractional bandwidth). As of March, 2011, more 
than 90 array antennas have been fabricated. Ultimately, it is expected that most 
major airports in the world will have four of these antennas.  
 
The computer simulations utilized in this article assume no dissipative loss. It is 
well known that the dissipative loss decreases the antenna radiation efficiency. It 
also decreases the antenna Q, which can be converted to a decrease in 
reflection loss. The net loss (dissipative loss and reflection loss) increases with 
the increase of the dissipative loss. The primary purpose of this paper is to 
present the basic fundamental performance of an antenna independent of any 
dissipative loss.  
 
2. Spherical-Cap Dipole Antenna 
 
A schematic for the double-tuned impedance-matched spherical-cap dipole 
antenna is shown in Figure 1. The dipole impedance and the shunt inductance 
are adjusted so that the resulting impedance locus can be double tuned with a 
series LC circuit.  

  
The WIPL-D computer code model for the spherical-cap dipole antenna is shown 
in Figure 2(a). The conical angle of the spherical cap and the diameter of the 
central inductive post are used for adjusting the resonant frequency and 
impedance level for the combination of the spherical-cap dipole impedance and 
the shunt inductance. For the case being considered: ka = 0.450 at 300 MHz, 
and a = 7.157 cm. 
 
Figure 2(b) shows the admittance locus for the spherical-cap dipole with the 
spherical-cap angle (61.0°) and inductive post diameter (1.453 cm) adjusted for 
optimum double-tuned 2:1 VSWR matching. The frequency range is 286.5 to 
313.5MHz. The center of the Smith admittance chart is normalized to 0.020 
Seimens. 
 



It is noted that in Figure 2(b) that the Smith Admittance Chart is used. This chart 
is helpful in adjusting the dipole dimensions so that the admittance locus is 
properly positioned between the 0.0040 and the 0.040 Siemens circles, so that 
the shunt inductance properly positions the impedance locus (Fig. 3(b)) for final 
double tuning with a series resonant circuit. (Also later, in Figures 4(a) and 5(a), 
a simple reflection (polar) chart is used to show that the impedance-matching 
design objective, maintaining the reflection magnitude within the VSWR = 2 (= 
0.33) circle, is achieved.) 
 
[Historical note: In the 1950s Harold Wheeler developed an impedance-matching 
technique that utilized a slotted line and a set of overlaying impedance charts. 
The top chart was a transparent reflection (polar) chart and the bottom chart was 
either a Smith impedance chart, a Smith admittance chart, or a Carter impedance 
chart (constant-impedance amplitude and phase lines, used for impedance 
transformation). The overlay charts were useful for developing an impedance 
matching strategy and for determining the characteristics of the matching 
components.] 
 
3. Spherical-Cap Dipole Antenna with Shunt L 
 
The WIPL-D computer code model for the spherical-cap dipole antenna with 
shunt inductance across the feed gap is shown in Figure 3(a). The shunt 
inductance (0.01326 μH) is selected so that the low and high frequencies 
impedance points lie on the constant 25 Ohm resistance circle of the Smith 
impedance chart as shown in Figure 3(b). The impedance locus is tangent to the 
constant 100 Ohm resistance circle at a frequency near 300 MHz. The 
combination of the spherical-cap dipole and shunt L act as a parallel resonant 
circuit that can be double tuned with a series resonant circuit.  
 
The key geometrical consideration for this impedance matching approach is 
shown in Figure 3(b). It should be apparent that for the series resonant circuit the 
right combination of resonant frequency and reactance will make the low and 
high frequencies points coincident at a desired location on the constant 25 Ohm 
resistance circle, which, for the case being considered, is located slightly above 
the resistive axis. 
 
4. Spherical-Cap Dipole Antenna with Shunt L and Series LC 
 
For the final step in double-tuned impedance matching a series inductance-
capacitance circuit is located at the input port of the matching network for the 
WIPL-D configuration of Figure 3(a). The resonant frequency for the series LC 
circuit is set to 308.5 MHz (which is different than the 301 MHz resonant 
frequency of the dipole with shunt inductance combination shown in Figure 3(b)). 
The series inductance = 0.2373 μH, and the series capacitance = 1.1215 pF. 
This combination results in the double-tuned reflection locus shown in Figure 



4(a). Figure 4(b) presents VSWR versus frequency. The 2:1 VSWR fractional 
bandwidth = 9.01% 
 
5. Single-Tuned Mid-band Matched Spherical-Cap Dipole Antenna 
 
For comparison purposes the impedance matching performance of the single-
tuned mid-band matched spherical-cap dipole antenna was computed. Single-
tuned mid-band matching was achieved using the WIPL-D configuration shown in 
Figure 3(a). The diameter of the dipole post was reduced to 1.220 cm and the 
shunt inductance was set = 0.0100 H. The reflection chart and the VSWR are 
presented in Figure 5. The single-tuned mid-band matched 2:1 VSWR fractional 
bandwidth = 3.73% 
 
Figure 5 shows the substantial increase of the fractional bandwidth provided by 
double-tuned matching as compared to that of single-tuned matching 
 
6. Comparison to Previously Published Results 
 
A comparison of the performance achieved in this paper to that achieved in [4] is 
presented in Table 1. 
 
Table 1. Performance comparison for impedance matching of spherical-cap 
dipole antenna 

Impedance Matching Type 
Single-Tuned Mid-band Match 

 
Double Tuned 

(WIPL-D) WIPL-D Ref. [4] 
Antenna Spherical-Cap Dipole  1 

ka at 300 MHz 0.450 
2:1 VSWR 

Fractional Bandwidth (%) 
B2 = 9.01 

(Figure 4(b)) 
B1MB = 3.73 
(Figure 5(b)) 

B1MB =3.52   2 

Q 19.2  3 19.0  4 19.5 
QLB

  5 13.2 
Q/QLB 1.45 1.44 1.48 

B2/B1MB Ratio 
(Theoretical, Eqs. (1)(3)) 

2.42 
(2.45) 

 

Notes: 
1. WIPL-D computer code assumes no dissipative loss 
2. See [4, Table 4] 
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It is observed that the 2:1 VSWR fractional bandwidth and the Q for the single-
tuned mid-band matched WIPL-D and Ref. [4] results are in good agreement. 
What is especially noteworthy is the excellent agreement of the B2/B1MB ratio for 
the WIPL-D code results and the theoretical results using Equations (1) and (3). 
This demonstrates the excellent results that can be achieved with modern 
computer-aided antenna design tools.  
 
The results presented in Table 1 provide substantiation that double-tuned 
impedance matching more than doubles the matching bandwidth achieved with 
single-tuned impedance matching 
 
7. Multiple-Tuned Impedance Matching 
 
Fano [6] established the theoretical limit on the matching bandwidth with respect 
to the number of tuned circuits in the impedance matching network. Using the 
same Wheeler antenna model (capacitor or inductor with constant radiation 
resistance), Fano derived an exact relationship for Bn, Q, and Γ, where n = 1, 2, 
3, 4, …….., ∞, is the number of tuned circuits in the matching network. (Single 
tuned, n = 1; Double tuned, n = 2; Triple-tuned, n = 3, etc.). Wheeler’s equations 
for single-tuned edge-band and double-tuned matching are in exact agreement 
with Fano’s equations for single and double tuning [3]. Fano’s solution is a set of 
three simultaneous transcendental equations that relate Bn, Q, and Γ [9]. Table 2 
presents the results of an evaluation [9] of Fano’s equations to determine the 
increase in the fractional bandwidth with a unit step in the tuning level. 
 
Table 2. Fractional-bandwidth ratio increase with increasing n, VSWR = 2:1 

n Bn/Bn-1 
Ratio (Percent Increase)

2 2.309 (130.9) 
3 1.238 (23.8) 
4 1.100 (10.0) 
5 1.043 (4.3) 
6 1.032 (3.2) 
7 1.022 (2.2) 
8 1.015 (1.5) 

 
It is observed that the ratio rapidly decreases for n > 2. Wheeler [2] states: “Only 
double or triple tuning is likely to be justified in practice. With practical tolerances 
on the added reactance arms, there is an optimum number of added tunings, 
such that a greater number would increase the reflection ratio by their tolerances 
more than they would decrease it by the theory.” Wheeler established a guideline 
for a practical upper bound on the fractional bandwidth 
 
Fano’s theoretical upper bound on the fractional bandwidth corresponds to the 
case of n = ∞. For this case the fractional bandwidth is given by [9]: 
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Bode [10, p. 367] was the first to publish the underlying principles for this result. 
Pozar [5, pp. 261-263] presents an overview on “The Bode-Fano Criterion.” 
Equation (4) is derived from Bode’s Equation (16-16) by converting his bandwidth 
to a fractional bandwidth. 
 
Obviously, Equation (4) (n = ∞) is not realizable in practice. Table 3 presents the 
percentage of the theoretical upper bound achieved with multiple-tuned 
impedance matching. 
 
Table 3. Percent of theoretical upper-bound fractional bandwidth for 
multiple-tuned matching, VSWR = 2 

n Bn/B∞ 
(Percent)

1 26.2 
2 60.6 
3 75.0 
4 82.5 
5 86.9 
6 89.7 
7 91.7 
8 93.1 

 
Double tuning (n = 2) provides most of the fractional bandwidth of the theoretical 
limit for multiple-tuned impedance matching. Conservatively, we can use double 
tuning, Equation (3), as the practical upper bound on the bandwidth. 
 
8. Upper Bound on Impedance-Matching Bandwidth 
 
Best and Hanna [4] in Section 2, “Fundamental Limitations on Q and Bandwidth,” 

state that their Equation (6), 
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fractional matched VSWR bandwidth.” The bound applies to their fractional 
matched VSWR bandwidth case, which is equivalent to the Wheeler single-tuned 
mid-band matching case.  
 
The fundamental limitation on impedance-matching bandwidth is the upper 
bound on the fractional bandwidth independent of any specific matching network, 
and for a given Q and a specified S. As noted above, such a bound was 
quantified by Bode and Fano:  



Theoretical: 
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As is typical of theoretical bounds, it is not achievable in practice. As noted 
above, double-tuned matching can be used as a conservative practical upper 
bound on the fractional bandwidth. 
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9. Summary 
 
Wheeler’s principles of double-tuned impedance matching are not well known. 
He developed relationships for single-tuned mid-band and single-tuned edge-
band impedance matching, which relate the bandwidth to the antenna Q and the 
maximum permissible reflection magnitude (or VSWR). He used the results of 
single-tuned edge-band impedance matching for a simple derivation of the 
relationship for double-tuned impedance matching. 
 

Wheeler’s double-tuned impedance matching equation, 1S
Q

1
B 2

2  , is 

perhaps the best overall measure of the achievable bandwidth for an antenna 
with a limit on the maximum VSWR. Double tuning is practical, provides more 
than double the bandwidth of single-tuned impedance matching, and more than 
60% of the theoretical upper bound on the impedance-matching bandwidth. B2 
can be considered as a practical upper bound on the impedance-matching 
bandwidth. 
 
One example of a double-tuned impedance matching network was presented 
here in detail. A comparison to recently published results for single-tuned mid-
band impedance matching verifies that double tuning more than doubles the 
bandwidth of single-tuned impedance matching.   
 
The double-tuned impedance matching technique was historically derived based 
on the approximation that the antenna was an electrically small antenna, a 
lumped capacitor or inductor with radiation resistance assumed to be constant 
over the bandwidth of interest. However, the fact is that the double-tuned 
approach can be usefully applied to antennas that are not electrically small, and 
have bandwidths that exceed 2:1. 
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Figure 1. Schematic Diagram 

 

Figure 1a. Basic WIPL Model



 

(a) WIPL-D model 

   

(b) Smith Admittance Chart, normalized to 0.020 Siemens 

Figure 2. Spherical-cap dipole antenna 



 

(a) WIPL-D model 

  

(b) Smith Impedance Chart, normalized to 50 Ohms 

Figure 3. Spherical-cap dipole antenna with shunt inductance, L 



  

 (a) Reflection (Polar) Chart, 50 Ohms at center  

 

 (b) VSWR 

Figure 4. Spherical-cap dipole antenna with shunt L and Series LC 



  

(a) Reflection (Polar) Chart, 50 Ohms at center 

 

(b) VSWR 

Figure 5. Single-tuned mid-band matched spherical-cap dipole antenna 
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