
 

  
Abstract— Harold A. Wheeler had a distinguished career in 
the field of radio-electronics. He had a unique talent for 
reducing complex scientific principles to simple forms that 
were universally helpful to theoreticians and practitioners. Of 
his many contributions, those related to antenna design are the 
subject of this paper. The three principal antenna topics in Dr. 
Wheeler’s experience were impedance matching to a 
transmission line, electrically small antennas, and planar 
arrays. This paper concentrates on the first two topics and 
presents two examples of how he developed simple forms that 
were very helpful and useful to the antenna community. His 
solutions, although simple in form, were in exact agreement 
with those based on more rigorous theory. 

 
Index Terms—antenna Q, impedance matching, small antennas 
 

I. INTRODUCTION 
 

Harold A. Wheeler (1903 – 1996) had a distinguished 
career in the field of radio-electronics. He was a pioneer in the 
design of radio receivers for sound, FM and TV. His invention 
of automatic volume control (AVC) in 1925 was a major 
contribution to early radio, and continues today to be a key 
component in many electronic circuits. In the early days of 
television he published several significant papers and in 1935 
he received the IRE Morris Liebmann Memorial Prize for his 
paper on TV amplifier problems. 

During World War II he was in charge of the design of the 
SCR-625 mine detector which was used extensively by the 
Allied forces. He was also a key contributor to the 
development of the adjunct radar system “identification 
friend-or-foe” (IFF). At the end of the war he was awarded the 
Navy Certificate of Commendation. 

After the war he started Wheeler Laboratories. He was 
involved with this group until his retirement in the late 1980s. 
This group specialized in microwave components, waveguide 
assemblies, radar and communications, and antennas. In 1964 
he received the IEEE’s highest award, the Medal of Honor: 
“For his analyses of the fundamental limitations on the 
resolution in television systems and on wideband amplifiers, 
and for his basic contributions to the theory and development 
of antennas, microwave elements, circuits and receivers.” 

At the 1984 Centennial Session of the Antennas and 
Propagation Society Symposium Harold Wheeler presented 
“Antenna Topics in My Experience” [1] in which he outlined 
his work in the field of antennas. He presented three topics: 
wideband matching to a transmission line, small antennas, and 
 

 

planar arrays. His later work on planar arrays is well known 
and appreciated by the antenna community. This, however, is 
not the case for his earlier work on electrically small antennas 
and impedance matching. The author, in recent publications 
[2-4], has presented Wheeler’s work on electrically small 
antennas and impedance matching in a detailed form, 
hopefully, to shed more light on Wheeler’s contributions in 
these two areas of antenna design. This paper presents a 
summary of these publications. 

 
II.  ELECTRICALLY SMALL ANTENNAS 

 
A.  Wheeler and Chu 
 
Typically the names of Wheeler and Chu are associated 

with electrically small antennas. In many cases there is no 
distinction made between their contributions. As noted in [2] 
Wheeler and Chu made individual and distinct contributions 
to the theory and practice of electrically small antennas. The 
one common thread was that they both developed a 
relationship between the Q of an electrically small antenna 
and an associated physical volume.  

Wheeler published the paper “Fundamental Limitations of 
Small Antennas” in December 1947 [5]. Fig. 1 is the original 
Fig. 1 from this paper.  
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Fig. 1.  Wheeler’s original figure as it appeared in his 1947 paper. The box 
insert converts Wheeler’s power factor relationship to one involving Q (p = 
1/Q). 

 
Wheeler recognized that a small antenna behaved as a 

lumped-element capacitor or inductor with some radiation 
resistance. Using simple formulas for these lumped-element 
components he developed his simple equation for the radiation 
Q of a small antenna [2]: 
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Where: 

VRS = Volume of radiansphere = 3thRadianleng
3

4π  

Radianlength = 
π

λ
2

 

λ  = Wavelength 
VE = Effective volume of small antenna = kVOC 
VOC = Occupied volume (for a cylindrical antenna it is the 
volume of the cylinder) 
k = Effective volume factor (typically > 1) 

Wheeler defined the radianlength and the corresponding 
radiansphere. The radianlength is a convenient measure for 
the size of a small antenna. Wheeler defined a small antenna 
as one whose maximum dimension is less than the 
radianlength. The radiansphere is the boundary between the 
near field and the far field of a small antenna. 

Wheeler’s Equation (1) defines a fundamental limitation for 
small antennas. The radiation Q of a small antenna is inversely 
proportional to the physical volume of the antenna. The 
accuracy of Equation (1) depends on the effective volume 
factor, which can be accurately determined using quasi-static 
electromagnetic (lumped-element) theory. 

Lan Jen Chu published his paper “Physical Limitations of 
Omni-Directional Antennas” in December 1948 [6]. His goal 
was to quantify the super-gain limitations of omni-directional 
antennas. In the process he derived the relationship for the 
fundamental theoretical lower bound for the Q of an 
electrically small antenna. The Chu relationship is [2]: 
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QChu is the theoretical lower bound for the Q of a small 
antenna. VChu is the volume of a sphere whose diameter is the 
maximum dimension of the small antenna. 

After presenting Wheeler’s formulas for the capacitor and 
the inductor antennas, a perspective of the Wheeler and Chu 
contributions is presented. 

 
B.  Wheeler’s Formula for the Capacitor Antenna 
 
Wheeler’s formula [2] for the capacitor antenna is presented 

below:  
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Where: 
a = Disc radius 
b = Distance between discs, dipole length 
ka = kSCkFC = Effective volume factor for capacitor antenna 
kSC = Shape factor for capacitor antenna 
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kFC = Fill factor for capacitor antenna 
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=ε r  Relative permittivity of fill (core) material 
A computer simulation was used to validate this formula. 

Fig.2 shows the computer model and the results of the 
validation. Very close agreement exists between Wheeler’s 
formula and the simulation results. 
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Fig. 2.  Validation  of Wheeler’s formula for the capacitor antenna, εr = 1. 
 

C.  Wheeler’s Formula for the Inductor Antenna 
 
Wheeler’s formula [2] for the inductor antenna is presented 

below:  
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Where: 
a = Loop radius 
b = Loop axial length 
kb = kSLkFL = Effective volume factor for inductor antenna 
kSL = Shape factor for inductor antenna 

b
a9.01kSL +≈ , somewhat less than this value if b < a 

kFL = Fill factor for inductor antenna 

2
a
bFor        ,

k
/111

1k

SL

r
FL >

μ−
−

≈  

=μ r  Relative permeability of fill (core) material 
Again, a computer simulation was used to validate this 

formula. Fig. 3 shows the computer model and the results of 
the validation. Very close agreement exists between 



 

Wheeler’s formula and the simulation results. 
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Fig. 3.  Validation  of Wheeler’s formula for the inductor antenna, μr = 1. 
 

D.  The Wheeler and Chu Contributions 
 

The Chu approach to the problem was highly theoretical. 
He used spherical wave functions and rigorous 
electromagnetic field theory to determine the lower bound for 
the Q of a small antenna whose maximum dimension is the 
diameter of the Chu sphere (volume = VChu). This antenna can 
only be realized in theory because it requires that there be no 
energy storage inside the Chu sphere. Chu’s work was 
remarkable in that he was able to develop a simple lumped-
element circuit whose performance was equivalent to that of 
the small antenna. Equation (2) can be derived using this 
circuit [2]. 

Wheeler’s approach to the problem was pragmatic. He 
appreciated the fact that a small antenna behaved essentially 
as lumped capacitance or inductance. He used relatively 
simple lumped-circuit analysis to develop his formulas. His 
formulas are accurate and useful for the design of practical 
small antennas.  

The Wheeler and Chu contributions are substantial. Chu 
provided the theoretical lower bound for the Q of a small 
antenna. Wheeler provided accurate formulas for the Q of 
small antennas. Wheeler’s work is useful and helpful to both 
theoreticians and practitioners. Wheeler, using his formulas, 
was able to describe one implementation of a small inductor 
antenna that approached the Chu limit [2]. 

 
III.  IMPEDANCE MATCHING 

 
A.  Wheeler and Fano 
 

Wheeler recognized in the 1930s [1] that an antenna behaved 
as a circuit element and that impedance matching of an 
antenna to a transmission line was needed in some 
applications. During the 1940s he developed the art of 
impedance matching using the reflection chart [7] as the 
primary tool. Fig. 4 presents the basic circuit diagram for 
multiple tuning of an antenna [3]. Contiguous tuning circuits 
alternate between series and parallel tuned circuit. All the 
tuned circuits are resonant at the same frequency. 
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Fig. 4.  Circuit diagram for multiple-tuning impedance matching network 

 
Wheeler, using the reflection chart, developed explicit 

formulas that relate the antenna Q-Bandwidth product to the 
maximum allowed reflection magnitude for the single-tuned 
and double-tuned circuits [4]. Wheeler’s equations for single 
and double tuning are: 
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fH = Highest frequency 
fL = Lowest Frequency 
f0 = Resonant frequency 
Γ  = Maximum allowed reflection magnitude 

 Fano [8, 2], using rigorous linear circuit theory, developed 
a complete set of equations for all levels of tuning ranging 
from n = 1 to n = ∞. His equations are: 
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  The relationship between the QB product and Γ is a set of 
transcendental simultaneous equations. It is remarkable that 
Wheeler’s formulas for single and double tuning are in exact 
agreement with Fano’s equations, since the forms of the 
relationship are so different. 
 

B.  Wheeler’s Single Tuning Equation 
 
The block diagram for the single-tuned circuit is shown in 

Fig. 5. Fig. 6 is a reflection chart showing Wheeler’s optimum 
solution for the single-tuned network.  
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Fig. 5.  Diagram for single-tuned impedance matching network 
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Fig. 6.  Reflection chart showing optimum single-tuning impedance matching 
 
 Wheeler starts with, what he referred to, as the “mid-band 
match” condition. For this case the network is adjusted so that 
the tuning and the impedance transformation results in 
impedance match (zero reflection magnitude) being achieved 
at the resonant frequency. Clearly, this is not the optimum 
single-tuned design. Wheeler indicates that if the impedance 
transformation is adjusted such the edge-band frequencies lie 
on the vertical axis of the chart then, the optimum single-tuned 
impedance matching (minimum maximum reflection 
magnitude) is achieved. The proof lies in simple geometrical 
considerations. 
 The relevant equations for the derivation of his single-tuned 
formula are presented below: 
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 C.  Wheeler’s Double Tuning Equation 
  

The block diagram for the double-tuned circuit is shown 
Fig. 7. Fig. 8 (a), (b), and (c) are reflection charts showing 
Wheeler’s optimum solution for the double-tuned network.  
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Fig. 7.  Diagram for double-tuned impedance matching network 
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Fig. 8 (a).  Reflection chart showing optimum double-tuning impedance 
matching 
 
 The development of the optimum double tuning starts with 
the optimum single-tuned case. As shown in Fig. 8 (a), the 
susceptance of the parallel resonant circuit is set equal in 
magnitude and opposite in sign to the susceptance of the 
single-tuned circuit at the edge-band frequencies. Fig. 8 (b) 
shows the resulting locus of the double-tuned network. Simple 
geometry (similar triangles) is used to show that 2

12 Γ=Γ . 
Fig. 8 (c) shows the classic optimum double-tuned locus with 
the frequency band extended beyond the operating band. 
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Fig. 8 (b).  Reflection chart showing optimum double-tuning impedance 
matching 
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Fig. 8 (c).  Reflection chart showing optimum double-tuning impedance 
matching 
 
 Wheeler’s formula for double tuning is derived directly 
from the single-tuned formula. 
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Where: 
1Γ  = Maximum single-tuned reflection magnitude 

2Γ  = Maximum double-tuned reflection magnitude 
 
 

C. The Wheeler and Fano Contributions 
 

The contrast between the Wheeler approach and the Fano 
approach is interesting. Fano, for the most part, relied heavily 
on mathematical rigor; Wheeler, on the other hand, reduced 
the problem to a form where the solution was apparent by 
simple geometrical considerations. 

Fano’s approach was comprehensive. It provided a 
complete picture of the basic limitations for the impedance 
matching of arbitrary impedances. In retrospect, the 
community benefits from both the Wheeler and Fano 
contributions. 
 
 E.  Summary of Impedance Matching Formulas 
 
 A summary of the impedance matching circuits described 
above is presented in the table below [4]: 
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