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TABLE 1
ApMITTANCE OF CouPLED V ANTENNAS (MILLIMHOS)
S/ Yu Y Yo
0.1 17.99 — 743.91  —10.25 4 j45.60 22.31 — j48.48
0.2 14.19 — ]14 40 —2.26 +715.72 14.65 — j14.95
0.3 14.34 — 6.7 0.58 + 79.56 14.50 — 76.89
0.4 16.06 — 53. 09 2.83 + j7.17 16.13 — j3.22
0.5 18.98 — j1.80 5.47 + 74.90 18.95 — 71.92
0.6 21.39 — 33.62 7.13 4+ ;0.61 21.28 — 73.64
0.7 20.39 — 55.97 5.01 — j3.62 20.35 — 75.90
0.8 18.59 — j5.72 1.58 — j4.79 18.63 — j5.67
0.9 18.26 — j1.48 —1.04 — j4.23 18.31 — j4.49
1.0 19.03 — j3.80 —2.93 — 72.79 19.04 — 73.84
= 0.007022, h/x = 0.25, ¢ = 90°.
TABLE 1I
Apairraxce oF CourLkp V ANTENNAS (MILLIMHOS)
8/ Yu Y. Yao
0.1 6.77 — j17.91 0.23 + 417.94 7.22 — j18.93
0.2 7.53 — j7.54 0.95 4 78.08 7.64 — 77.72
0.3 8.77 + j4.10 1.95 + j5.37 8.83 — j74.19
0.4 10.57 — j2.54 3.25 + 73.86 10.59 — j2.63
0.5 12.71 — j2.77 4.71 +451.71 12.65 — j2.83
0.6 13.30 — j4.73 4.47 — 71.59 13.23 — j4.71
0.7 11.88 — 55.53 2.03 — 53.37 11.88 — j5.48
0.8 11.06 — j1.79 0.15 — 33.23 11.09 — 74.77
0.9 11.28 — 54.00 —1.60 — 52.38 11.31 — 74.02
1.0 11.95 — 53.88 —2.49 — j1.06 11.95 — 73.90

= 0.007022, k/\ = 0.25, ¢ = 120°.

ten segments, and a piecewise-sinusoidal expansion is employed
for the current function. As described in [3], the integral equatjon
is thus reduced to a system of simultaneous linear equations. The
general theory of these moment methods is presented by Harring-
ton [47].

NUMERICAL RESULTs

Figs. 1 and 2 show the mutual admittance Y. = G2 + jBuw
versus the spacing s for an array of half-wave V antennas. When
the angle ¢ is 180° it may be noted that the results agree with
those of Chang and King [2] for parallel linear antennas.

Tables I and II show the self- and mutual admittances versus
spacing for ¢ = 90° and 120°.

Using an IBA 7094 computer, 5 seconds are required to solve
a two-element array problem with off-center terminals. Each wire
antenna may have arbitrary shape, position, and orientation. Op-
tional output data includes the radiation efficiency and the gain
G(8,¢). For example, Yagi and log-periodic V arrays are readily
analyzed.

Jack H. RicaMonD
Dept. of Elec. Eng.
Ohio State University
Columbus, Ohio 43210
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Ray-Diffraction Method for Handling
Complex Incident Fields

Abstract—A ray-diffraction method is described which is ap-
plicable to diffraction problems where the incident field on a
diffracting edge cannot be represented as a single incident ray
but exhibits a more complex form. The complex incident field may
be represented by a combination of simple rays; the diffraction
of each ray may then be treated individually. The total diffracted
field is the sum of these diffraction components. The method is
illustrated by applying it to the double knife-edge problem.

I. ProPosED METHOD

Ray-diffraction techniques [13-[8] provide solutions to problems
which are difficult to solve by other approaches. This communi-
cation proposes a method for applying ray optics to diffraction
problems involving complex incident fields on an edge which can-
not be described simply as emanating from a point or line source.

The proposed method consists of determining a set of simple
sources which produce the same amplitude and phase character-
istics as those of the actual incident field in the near neighborhood
of a diffracting edge. The diffraction coefficients can then be cal-
culated individually for each source, and the resultant diffracted
field from the edge may be determined by superposition. To de-
scribe the details of the method, it is applied to the double knife-
edge problem, where the complex field on the shadow boundary
of the edge closest to the souree is incident on the far edge.

11. DouBLE KNiFe-EpGE ExaMpLE

Fig. 1 shows the geometry for the double knife-edge problem.
The line source and the two knife edges are parallel and normal
to the paper. Three sets of polar coordinates are defined with the
origins at the line source and the two edges.

The incident field on the near edge is a cylindrical wave and can
be represented by a single ray emanating from the line source.
The incident field (any polarization) on the far edge, near the
shadow boundary, can be shown to be given approximately by

(o7, (101
Gu) = [3 + 2/m)%u exp (jr/4)] exp (j2u?) @

where G(u) is the total field relative to field on the shadow boundary
(8 = 0) at r,when the near edge is removed, v = [kbr/(b + r)]¥? X
sin (6/2), k = 2x/A, and M is the free-space wavelength.

Equation (1) describes the incident field near the far edge when
fu| < 0.5. It corresponds to a single diffraction from the near
edge and does not include multiple diffractions between the two
edges. The multiple diffractions are usually negligible in such
problems as long as b < c¢. It is also assumed that the time de-
pendence is exp ( jwt), and that kb and kr >> 1.

The objective now is to find a combination of simple line sources
whose incident field on the far edge approximates, in both ampli-
tude and phase, the incident field as represented by (1). Of primary
importance is the location and the excitation of the sources. The
location of the sources ean be determined by a consideration of
the phase curvature of the incident field near the far edge. This is
given by the factor exp (j2u?) in (1) where

2u? = 2kbe/(b + c¢) sin? (6/2). @)

It can be shown, by simple geometry, that this phase characteristic
corresponds to any source having a phase center located at the
original source point.

Fig. 2 shows a line-source array located with its phase center at
the original source point, satisfying the preceding phase requirement,
and also providing the means for obtaining the proper amplitude

Manuscript received June 16, 1969; revised July 7, 1970.



822

OBSERVATION
POINT

FAR EDGE-\
NEAR EDGE
. p
LINE r
/SOURCE
9
5~ 8 Q
lrce: 7] /
INCIDENT \‘ \
RAY
DIFFRACTED
RAYS
PERFECTLY
fe—— CONDUCTING
SCREENS
A L%
b - ¢ .]‘ d ——
Fig. 1. Double knife-edge geometry.

in the near neighborhood of the far edge. The far-field pattern
of the line-source array is given by

A(¢") = % + 2B sin [(2rh/A) sin 8" exp (jr/4). 3)

The 1/2 factor on the right corresponds to the center line source.
- The other factor corresponds to the remaining doublet. In (3), B is
the excitation amplitude of each line source of the doublet. For
small angles it can be shown that the amplitude and phase pattern
for the line-source array, as given by (2) and (3), can be made
identical to the amplitude and phase of the actual incident field
as given by (1).
In order to evaluate B, the right side of (8) is equated to the
amplitude term in (1). This results in

o5 ain (27 o o) _ {2V Boe N0
S — s1n =\|- -
A ) \b+¢ M3

Since the value of 2 has not been specified, it is now selected
so that the sine functions can be replaced by their arguments.
Thus h is restricted by

()

2xh < -
—— sin — .
A 16

"This is satisfied if & = A/32; moreover, since 6 and 6" are small, B
Is now determined as
4|2 kb /2
- [— —® + c)] .
Tl €

Thus the virtual source arrangement shown in Fig. 2, with the ampli-
tude and phase as determined previously, provides a field that
closely approximates the actual amplitude and phase of the inci-
dent field in the neighborhood of the far edge. Each line source
can now be considered as exciting diffracted rays off the far edge;
the diffraction coefficients or patterns for each can be determined
from the basic solution of diffraction by an edge excited by a single
line source [9], [10]. As an example of this procedure, the case
of the field at the shadow boundary of the two edges is caleulated.

The field is to be determined at the point ' = d and 6’ = 0.
In Fig. 2, « is shown to be the angle separating the shadow bound-
aries associated with the virtual line sources. Since « is very small,
it is possible to use (1) for evaluating the field on the shadow bound-
ary attributed to each line source. For the center line source, ¥ = 0;

B

(5)
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for the doublet line sources, « is given by

Tke+od . a

l_[—__b—{—c—{—d:l sm:i:2 (6)
A kd 2

lyl = —

T 6 Lb +o+d)b + 0)] ' @

The magnitude of » can be shown to be less than 0.5. The total
field G is given by the superposition of three components:

G=1%1+0+ @mv2lulexp (jo/d) — %
+ @/m)V? | u | exp (jr/4)]B exp (—jn/4)
G =1+ 2B@/m u|. (8)

The quadratic phase term in (1) 1s assumed to be unity (i.e., only
the leading term is considered). Substituting (53) and (7) into (8)
results in

(b/e)d/e)

1/2
14 b/e + d/c} ’ ©)

1,1
G‘Z+%[

This result closely approximates the field at the shadow bound-
ary under the restrictions that kb, k¢, and kd > 1 and b/c < 1. As
in previous cases, where ray-optical results were compared with
results obtained by other techniques, this result is also in agree-
ment with one obtained by means of a technique which utilized
a double surface integration to determine the field [11].

It is interesting to note that, as in the case of the 6-dB decrease
in field strength along the shadow boundary for a single knife
edge, the field on the shadow boundary in this case is also inde-
pendent of frequency and is simply a function of geometry. It is
also noted that (9), as required, satisfies reciprocity with respect
to the source and observation points. Fig. 3 shows G plotied as a
function of d/¢ with b/c as a parameter. It is observed that the
minimum relative field is down 12 dB and that the relative field
strength increases as the observation point is further removed
from the far edge.

This example illustrates how a complex incident field on a dif-
fracting obstacle can be decomposed so that ray-optical techniques
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Fig. 3. Total signal along shadow boundary relative to siznal at same

observation point when both edges are removed.

can be applied to the simpler constituent parts. This procedure
can provide solutions to problems which would be difficult by
other techniques.
ALFreDp R. LoprEz
Wheeler Labs., Inc.
Smithtown, N. Y. 11787
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Scattering Cross Section for Two Cylinders

Abstract—Analytical expressions are derived for the total scat-
tering cross section of two identicai parallel nonoverlapping
circular cylinders in the immediate neighborhood of each other.
Results obtained for the limiting case of Rayleigh particles are
compared with the corresponding results obtained with the Ray-
leigh~Gans approximation.

I. INTRODTCTION

Most of the authors [1]-[6] who had worked on solving prob-
lems of multiple scattering from a collection (random or regular)
of parallel cylinders have used some form of perturbation or ap-
proximation method or have considered or imposed special condi-
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tions on the parameters of the particles. (Other less pertinent work
can be traced from the reference list.)

In examining the case of an arbitrary configuration of parallel
cylinders, Twersky [1] employed an iterative procedure as follows.
The independent (single cylinder, or first order) scattering waves
of the nth cylinder are taken as secondary incident waves on the
»th cylinder (n # ») thereby obtaining a second-order approxi-
mation for the scattered waves of the system. The process is then
repeated using the second-order scattered waves as the secondary
incident waves to obtain a third-order approximation to the true
scattered waves, and so on. For convergence of the iteration to
be readily ensured, one requires that successive contributions
should decrease with the increase in the number of steps of the
iteration; if not errors may accumulate. His results appear there-
fore to be most useful for special cases of the problem, e.g., Ray-
leigh particles, widely separated or soft particles,

Row [2] has considered the seattering from an arbitrary array of
parallel cylinders in general and two identical econducting cylinders
in particular. It is evident that his method can be readily generalized
to cover the case of dielectric particles. Using a special diagonal
approximation method, he obtained a reasonable estimate of the
vector potential of the ensemble which he used to present results
for cases where the separation is generally not less than six times
the particle radius. Other investigations [6]-[8] have shown that
for small particles of the type considered by Row, the multiple
scattering effects are usually small whenever the separation is
more than four times the particle radius. Consequently, doubts
exist as to the suitability of the approximation at contact positions
or about this region of separation.

The scattering of a plane wave by a row of small cylinders was
treated by Millar [37. This was another case of solution by approxi-
mation methods. Zitron and Karp [4] and Karp [5] also assumed
large separation between particle pairs in arriving at their solu-
tions. Recently, however, an exact solution was given [9] for the
problem of scattering by two neighboring circular cylinders. This
solution can be readily extended to any collection of cylinders
of other ecross sections provided that the wave equation is separable
for any member of the ensemble. No restrictions on the geometry or
composition have been imposed except that the cylinders are
placed normally to the direction of propagation of a plane plave-
polarized electromagnetic wave.

In this paper we would like to give the derivation of the general
formula for the total scattering cross section from two identical
parallel circular cylinders with complex index of refraction and use
the formula to estimate the validity of the independent scattering
approximation for Rayleigh particles. Comparison is made with the
results of Lillesaeter [77] for the case of two Rayleigh spheres,
which he computed using Trinks’ solution [67].

II. ScarrErING Cross-Section FormuLa

Consider two identical parallel circular cylinders, of radius a
and refractive index m, placed in the field of a2 plane plane-polarized
electromagnetic wave such that the plane containing the axes of
the cylinders makes an angle 8 with the direction of propagation
of the incident wave. Denote by 7,8 the polar coordinates of an
observation point P with respect to the center of one cylinder
(Fig. 1). Then the total scattering cross section C,a(® may be
taken as

Qsca(z) = Csca(z)//27"a = _1_ /. l Tz(ﬂ) !|2 ds (1)
T ¢

where if 8 = kd, d being the separation distance between the
cylinders, then

o

Ty@) = 2, {1bn + 2bn exp (—78 cos 0)} exp (—in(8 + B)) (2)

n=—0c

is the scattering amplitude function for two cylinders [10], when
the normally incident wave is polarized parallel to the axes



