
82 1 

0.1 

0.3 
0.2 

0.4 

0.6 
0.5 

0.8 
0.7 

0.9 
1.0 

17.99 - j43.91 -10.25 + j45.60 22.31 - j48.48 
14.19 - j14.40 -2.26 +jl5.72 14.65 - j14.95 
14.34 - j6.i4 0.58 + j9.56 14.50 - j6.89 
16.06 - j3.09 2.83 + j7.17 16.13 - j3.22 
18.98 - j1.80 5.45 + j4.90 18.95 - j1.92 
21.39 - j3.62 7.13 + j0.61 31.28 - j3.64 
20.39 - j5.97 5.01 - j3.62 20.35 - j5.90 
18.59 - j5.72 1.58 - j4.i9 18.63 - j5.67 
18.26 - j4.48 -1.04 - j4.23 15.31 - j4.49 
19.03 - j3.80 -2.93 - j2.79 19.04 - j3.84 

a ;X 

0.1  8.77 - i17.91 -0.23 I ilS.94  7.22 - i18.93 
0.2 i.53 - j7.54 0.95 +$8.08- 7.64 - j7.72 
0.3 8.77 + j4.10 1.95 + j5.37 8.83 - j4.19 

.I- ~ U~ 

0.4 10.57 - $2.54 3.25 + f3.86 10.59 - 32.63 
0.5 12.71 - j2.77 4.71 +31.71 12.65 - j2.83 
0.6 13.30 - i4.i3 4.4i - il.59 13.53 - i4.71 
0.7 11.88 - 5 5 . 5 3  2.03 - 53.37 11.88 - 35.48 
0.8 11.06 - j 4 .79  0.15 - j3.23 11.09 - j4.77 
0.9 11.28 - j4.00 -1.60 - j2.38 11.31 - j4.02 
1.0  11.95 - j3.88 -2.49 - jl.06 11.95 - j3 .90  

a/X = 0.00i0221 h / h  = 0.25, ;C. = 120". 

ten segments, and a piecewise-sinusoidal expansion is employed 
for the ctlrrent funct.ion. As described in [a], t.he int.egra1 equation 
is thus reduced to a syst.em of simult.aneous linear eqnat.ions. The 
general theory of t.hese moment met.hods is present.ed by Harring- 
ton [4]. 

NUMERICAL REBELTS 

Figs. 1 and 2 show t.he mutual  admittance YI? = G1z + jB1? 
versus the spacing s for an  array of half-nave Tr antennas. When 
the angle I) is BO', it. may  be noted that  the results  agree with 
those of Chang  and King [2] for parallel linear antennas. 

Tables I and I1 show the self- and  mutual  admittances versus 
spacing for $ = 90" and 120". 

Vsing an IBl I  7094 computer, 5 seconds are required t.0 solve 
a t.wo-element ana>- problem 6 t h  off-cent.er terminals. Each wire 
antenna  may have arbitrary shape, position, and orient,ation. Op- 
t.ional output  data includes the radiation efficiency and  the gain 
G(8,b). For example, Yagi and log-periodic V arrays are readily 
analyzed. 

Ray-Diffraction  Method for Handling 
Complex Incident Fields 

Abstract-A ray-diffraction method is described which is ap- 
plicable to diffraction problems where  the incident field on a 
diffracting edge cannot be  represented  as a single  incident ray 
but exhibits  a more complex form. The complex incident field may 
be  represented by a combination of simple rays;  the diffraction 
of each  ray may then  be  treated individually. The total  diffracted 
field is  the sum of these diffraction components. The method is 
illustrated by applying it to the double  knife-edge problem. 

I. PROPOSED METHOD 

Ray-diffraction techniques [l >[SI proyide  solutions to problems 
which are difficult. to solve by ot.her approaches. This communi- 
cation proposes a  method for applying ray optics t.o diffraction 
problems involl-ing complex incident fields on an edge which can- 
not  be described simply as emanating from  a  point or line source. 

The proposed method consists of determining  a set of simple 
sources which produce the same amplitude and  phase  character- 
istics as those of t.he actual incident field in  the near neighborhood 
of a  diffracting edge. The diffraction coefficients can  t,hen be cal- 
culat,ed individually for each source, and t.he resultant diffracted 
field from t,he edge may  be determined by superposition. To de- 
scribe t.he details of the method, i t  is applied to  the double knife- 
edge problem, where t.he complex field on the shadow boundary 
of the edge closest. to  the source is incident. on the  far edge. 

11. DOUBLE KNIFE-EDGE EXAMPLE 

Fig. 1 shows the geomet.ry for t.he double knife-edge problem. 
The line source and t.he two knife edges are parallel and  normal 
to  the paper. Three  sets of polar coordinate3 are defined 6 t h  the 
origins at  the line source and  the two edges. 

The incident field on the near edge is a cylindrical wave and  can 
be represented by a single ray emanat.ing from the line source. 
The incident field (any polarizat.ion) on the  far edge, near the 
shadow  boundary, can be show- to  be given approximately by 
c91, c101 

G(u) = [a + (2!7r)% exp ( j7r /4) ]  exp (@x2) (1) 

where G ( u )  is the  t,otal field relative to field on t.he shadoa  boundary 
(e = 0) a t  r,when the near edge is removed, u. = [kbr/(b + r)]1'2 X 
sin (e!2), k = 2 ~ / h ,  and h is the free-space wavelength. 

Equation (1) describes the incident. field near the  far edge when 
I u I < 0.5. It corresponds to  a single  diffraction from t,he  near 
edge and does not. include  multiple  diffractions bebeen  the two 
edges. The  mukiple diffractions  are  usually negiigible in such 
problems as long as 2, < c. It is also assumed that  the  time de- 
pendence is exp ( jwt), and  that kb and kr  >> l .  

The objective now is t.0 find a combinat.ion of simple  line  sources 
whose incident field on t.he far edge approximat,es,  in b0t.h ampli- 
tude  and phase, the incident field as represented bg; (1). Of primary 
importance is t.he location and  the excit.ation of the sources. The 

JACK H. RICHIiOh-D 
locat,ion of t,he sources can be determined by a consideration of 

Dept,, of Elec, Eng. the phase curvature of t,he incident field near the  far edge. This is 

Ohio State University given by  the  factor exp ( jZu2)  in (1) where 

Columbus, Ohio 43210 2u* = 2kbcj(b + c )  sin? (0,Q). (2 )  

It can be shown, by simple geometry, that  this phase  characteristic 
corresponds to  any source having  a  phase center located at   the  

[ II  S. A. Schelkunoff and H. T. F-, A n t m n a s ,  Theory  and Practice. original source point.. 
[21 ?, H, Chang and R ,  p, King, t,mo arbit,rarilg- located Fig. 2 shows a line-source array located with  its phase center a t  New York: Wilcy, 1952. 

identical  parallel antennas," IEEE T r m s .  Antennas Propagat. ,  the original source point,  sat.kfying the preceding phase requirement., 
vol. AP-16,  pp. 309-317. May 1968. 

(31 J. H. Richmond, LLCoupled linear antennas .u.ith sken- orientation," and also providing the  meam  for  obtaining  the proper amplitude 
IEEE Trans. Antennas  Propagat. (Communications), vol. AP-18, 

[41 R. F. Harrington. Freld Computation by Moment Methods. S e w  
pp.  694-696,  Septembgr 19i0. 

York: Macmillan,  1966.  Manuscript receiced June 16,  1969; revised July 7, 1970. 
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,- LINE SOURCE EXCITATION = E e x p ( - j d 4 )  

PERFECTLY 
CONDUCTING 

i b -!. c i d A  

Fig. 1. Double hife-edge geometry. 

in the near neighborhood of the  far edge. The far-field pattern 
of the line-source array is  given by 

The 1/2 factor  on  the  right corresponds to the center  line source. 
. The  other factor corresponds to  the remaining doublet. In  (3), B is 

the excit.ation amplitude of each line source of the doublet. For 
small angles i t  can be shorn that the  amplitude  and phase pat.tern 
for the line-source array,  as given by (2) and (3), can be made 
identical to  the  amplitude  and phase of the  actual incident field 
as given by (1). 

In  order to evaluate B, the  right side of (3) is equated to the 
amplitude  term in (1). This results in 

(,fi" . ) (;)"2( kbc )'" e 
2B sin - sln 6''' = - - 

b + c  
sin - . 

2 (4) 

Since the value of h has not been specified, it  is now select.ed 
so that  the sine  functions can be replaced by their arguments. 
Thus h is restricted by 

2xh - sin 8" < - . x 16 
T 

This is  satisfied if h = X/32; moreover, since 0 and 0'' are small, B 
is noa  determined as 

Thus  the  virtual source arrangement shown in Fig. 2, with the ampli- 
tude  and phase as determined previously, provides  a field that 
closely approximates the  actual  amplitude  and phase of the inci- 
dent field in  t,he neighborhood of the  far edge. Each line source 
can now be considered as  exciting diffracted rays off the far edge; 
the diffraction coefficients or  patterns for  each  can be determined 
from t.he basic solution of diffraction by  an edge excited by a single 
line source [9], [lo]. As an example of t.his procedure, t,he case 
of the field a t  t.he shadow  boundary of t.he two edges is calculated. 

The field is to be determined at the  point r' = d and e' = 0. 
In Fig. 2, LY is shown to be the angle separating  the shadow  bound- 
aries associated with the virt.ua1 line sources. Since 01 is very small, 
i t  is possible to use (1) for evaluat.ing the field on the shadow  bound- 
ary  att.ributed  to each line source. For t.he center  line source, ZL = 0; 

/ TUNE SOURCE EXCITATION = 112 ,-FAR EDGE LINE SOURCE EXCITATION = 112 

LINE SOURCE EXCITATION=-Bexp(-jd4) 

I 
I b t c - d d  

Fig. 2. Virtual  sources  providing  proper  incident field on far edge 

for the doublet. line sources, u is given by 

The magnit,ude of u can be shown to be less than 0.5. The  total 
field G is given by t,he superposit,ion of three components: 

The  quadratic phase term in (1) is assumed to  be  unity (i.e., only 
the leading term is considered). Substihting (5) and (7) into (8) 
results in 

G = - + -  1 1 [ ( b / c ) ( d / c )  1"' 
4 27r 1 + b / c  + d / c  ' 

This result closely approximates the field at t,he  shadow bound- 
ary under t.he rest,rict,ions that kb, kc, and kd >> 1 and b/c  < 1. As 
in  previous cases, where ray-optical  results were compared with 
results obt.ained by ot.her techniques, t.his result is also in agree- 
ment a i t h  one  obtained by means of a technique which utilized 
a  double  surface  integrat.ion to  determine  the field [ I l l .  

It is  interesting to  note  that,,  as  in  the case of the 6-dB decrease 
in field strength along the shadow  boundary for a single knife 
edge, the field on t.he shadow boundary in this case is also inde- 
pendent of freqnency and is simply a  function of geometry. It is 
also noted that (9), as required, satisfies reciprocity nith respect 
to  the source and observation  points. Fig. 3 shows G plotted  as a 
function of d l c  with b,lc as  a paramet.er. It is observed t.hat  the 
minimum relative field is down 12 dB  and  that.  the  relative field 
strengt.h increases as the observat,ion point is further removed 
from the  far edge. 

This example illustrates how a complex incident field on a  dif- 
fracting  obstacle  can be decomposed so that ray-optical  techniques 

A 
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d / C +  

0 2 4 6 a 10 

W I  
J I  
> 
W 
J -8.- b/c = I 

b/c = .5 

b / c  =.I 

b /c = .05 

b / c = O 7  

Fig.  3.  Tot,al signal along  shadow  boundary re1at.i.r.e to si-nal at. same 
observation  point when both edges are removed: 

can be applied to t.he simpler constit.uent parts.  This procedure 
can provide  solutions to  problem which would be difficult by 
ot.her techniques. 

ALFRED R. LOPEZ 
Wheeler Labs., Inc. 
Smithtonn, X. I?. 11787 
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Scattering Cross Section for Two Cylinders 

Abstract-Analytical expressions are derived  for the total  scat- 
tering cross  section of two identicai parallel nonoverlapping 
circular cylinders in  the  immediate neighborhood of each other. 
Results obtained  for the limiting case of Rayleigh particles are 
compared with the corresponding results obtained with the Ray- 
leigh-Gam approximation. 

I. INTRODCCTIOS 

tions  on the  parameters of the particles.  (Other less pertinent work 
can be traced from the reference list.) 

In  examining the case of an  arbitrary configurat,ion of parallel 
cylinders, Twersky [I J employed an  iterative procedure as follows. 
The independent (single cylinder, or first  order) scattering waves 
of the  nth cylinder  are taken  as secondary  incident waves on the 
vth cylinder (n # V) thereby  obtaining a second-order approxi- 
mation for the  scattered waves of t.he system. The process is  then 
repeat,ed using the second-order scattered waves as the secondary 
incident, aaves  to  obtain a  third-order approximat.ion to  the  t,me 
scattered waves, and so on.  For convergence of the iterat.ion to  
be readily  ensured, one requires that  successive contributions 
should decrease with  the increase in  the number of steps of the 
iteration; if not errors may accumulate.  His  results appear there- 
fore to  be most useful for special cases of t,he  problem, e.g., Ray- 
leigh particles, widely separated or soft  particles. 

Row [2] has considered the  scattering from an  arbitrary  array of 
parallel cylinders in  general and two identical  conducting  cylinders 
in  part,icular. It is evident  that his met.hod can  be readily generalized 
to cover the case of dielectric particles. Using a special diagonal 
approximation  method,  he obt.ained a reasonable  est.imate of t,he 
vector potential of the ensemble which he used to present  results 
for cases where t.he separat.ion is generally not. less than six times 
the  particle radius. Ot.her investigations [6]-[8] have shown that 
for small part,icles of the t,ype considered by ROR, the multiple 
scattering effects are usually  small whenever the separat.ion is 
more than four  times the  particle radius. Consequent,ly, doubts 
exist, as  to  the suit.ability of the approximation at  contact positions 
or about  this region of separation. 

The  scattering of a  plane m-ave by a row of small cylinders aas 
t.reated by Millar [3]. This  as another case of solution by approxi- 
mation methods.  Zitron and  Iiarp [4] and  Karp [5J also assumed 
large separation  betaeen  particle  pairs in  arriving at  their solu- 
tions. Kecent,ly, hoaever, an  exact  solution was given [9] for t,he 
problem of scat,tering by t a o  neighboring circular cylinders. This 
solution can be readily  extended to  any collection of cylinders 
of other cross sect,ions provided that  the wave equat.ion is separable 
for  any member of the ensemble. 50 restriclions on the geometry or 
composition have been imposed except that  the cylinders are 
placed normally to  the direction of propagat.ion of a plane plane- 
polarized electromagnetic wave. 

In  this  paper we would like to give the  derivation of the general 
formula for the tot.al  scat,tering cross section from two identical 
parallel circular cylinders wit.h complex index of refract.ion and use 
t.he formula to estimate t.he validity of the independent scattering 
approximat.ion for Rayleigh  particles. Comparison is made  with  the 
results of Lillesaet.er [ i ]  for the case of two  Rayleigh  spheres, 
which he computed using Trinks’  solution [GI. 

11. SCATTERING CROSS-SECTIOS FORMULA 

Consider two ident,ical parallel  circular cylinders, of radius a 
and refract.ive index m, placed in the field of a  plane plane-polarized 
electromagnetic wave such  that  the plane  containing the axes of 
the cylinders makes  an angle p with t.he direction of propagation 
of the incident wave. Denote by r,B t.he polar coordinates of an 
observation  point P with respect to  the center of one  cylinder 
(Fig. 1). Then  the tot.al  scat.tering cross section Caca(2) may be 
taken as 

Most of the  authors [1>[5] who had worked on solving prob- cylinders, then where if 6 = l id,  d being the  separation dist,ance between the 

lems of multiple scattering from a collection (random or regular) 
of parallel cylinders have used some form of perturbation or ap- 
proximation  method or have considered or imposed special con& 

m 

T2(e) = (A + exp (-is cos 6)) exp  i in(^ + a)) ( 2 )  
n=- 

is t.he scat.tering amplit.ude function for two cylindem [lo], when 
the normally  incident aave  is polarized parallel to the axes 


